RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIFTH SEMESTER EXAMINATION, DECEMBER 2013

THIRD YEAR

CHEMISTRY (Honours)

Date : 21/12/2013 Time : 11 am – 1 pm

Paper : VI

Full Marks : 50

[Answer <u>any one</u> question from each unit]

<u>Unit - I</u>

Unit - II						
		ii) $Na_4[Co(NO_2)_6]$ $\mu = 1.88 BM$				
		i) $[CoCl_2(OPPh_3)_2]$ $\mu = 4.91BM$				
	e)	How would you account for the magnetic moment of the following complexes?	[2]			
	d)	The common oxidation state of silver is $+1$, but that of gold are $+1$ and $+3$. Justify from C.F.T.	[3]			
		using orgel diagram.	[3]			
	c)	CrF_{6}^{3-} ion shows absorption bonds at 14,900 cm ⁻¹ , 22,700 cm ⁻¹ and 34,400 cm ⁻¹ . Assign the bands				
	b)	Explain the following order of LMCT energies $VO_4^{3-} > CrO_4^{2-} > MnO_4^{-}$	[2]			
2.	a)	An aqueous solution of $Ni(NO_3)_2$ is green. Addition of aqueous NH_3 causes the colour of the solution to change to blue. If ethylenediamine is added to the green solution of $Ni(NO_3)_2$, the colour changes to violet. Account for the colours of these solutions.	[3]			
	e)	The corrected molar susceptibility of a paramagnetic material is $6 \cdot 20 \times 10^{-3}$ cgs units at 27°C. Find out the number of unpaired electrons.	[2]			
	d)	"Negetively charged F^- ion occupies the weaker end of the spectrochemical series while neutral CO is located in the stronger end." —Explain.	[2]			
	c)	"Both $[Ni(CN)_4]^2$ and $Ni(CO)_4$ are diamagnetic —but they have different geometries" —Explain.	[3]			
	b)	$[\text{FeF}_6]^{3-}$ is colourless but $[\text{Fe(SCN)}_6]^{3-}$ is blood red – though both are d ⁵ complexes.	[3]			
		orbital complex? Give its crystal field stabilisation energy value.	[3]			
1.	a)	$[Fe(dipy)_3](ClO_4)_3$ complex has a magnetic moment of 2.2 BM. Is it an inner orbital or outer				

3.	a)	Establish the relation between 'Stepwise formation Constant' and 'Overall formation Constant' in the formation of the complex ML_X .	[3]
	b)	How will you prepare cis- and trans- forms of $[PtCl_2(NH_3)_2]$ form NH ₃ , HCl and $[PtCl_4]^{2-}$?	[2]
	c)	Discuss the equilibrium between chromate and dichromate ions in aqueous solutions at different pH showing structural equilibrium between them.	[2]
	d)	What is the basis on which M^{2+} ions are arranged in the 'Irving-Williams Series'? Why Cu^{2+} ion is placed at the top position in the series?	[3]
	e)	"Chromium (II) halides are very strong reducing agents". Justify the statement giving suitable examples.	[2]
4.	a)	How will you determine the metal-ligand ratio of a complex by mole ratio variation?	[4]
	b)	Strong field d ³ and d ⁶ complexes are generally inert. Explain.	[2]
	c)	The chemistry of Zirconium and Hafnium are very similar. Explain giving suitable examples.	[3]
	d)	Arrange M^{3+}/M^{2+} (M = Fe, Co and Ni) with increasing standard reduction potential values. Justify	
		your answer.	[3]

<u>Unit - III</u>

5.	a)	Discuss the biological function of haemoglobin indicating the role of metal ion present in the active site of the protein.	[4]
	b)	Discuss the role of copper in any one of the copper containing enzymes present in biological	
	,	system.	[3]
	c)	Discuss with suitable examples, the 'Essential' and 'Benificial' metals in living systems.	[3]
	d)	Explain — 'Trivalent arsenic is more toxic than pentavalent arsenic'.	[3]
6.	a)	What are photosystem I and photosystem II? Explain their roles in photosynthesis.	[5]
	b)	Define active transport and passive transport. Discuss the mechanism through which the nerve cells	
		maintain the Na^+ and K^+ level inside and outside of the cells.	[5]
	c)	Write a note on diseases due to copper deficiency.	[3]
		<u>Unit - IV</u>	
7.	a)	Identify the first row transition metal for the following 18-electron species—	
		i) $[M(CO)_3(PPh_3)]^-$ ii) $[(\eta^5 - C_5H_5)M(CO)_3]$ (assume single M-M bond)	[2]
	b)	Why ferrocene cannot be nitrated directly? How ferrocene can be nitrated?	[3]
	c)	Identify A and B :	
		$PtCl_4 + C_2H_5OH \xrightarrow{Reflux} A \xrightarrow{KCl} B$	
		Discuss the structure and bonding of B.	[7]
8.	a)	What is hydroformylation reaction? Why is it so called?	[3]
	b)	What is 'hepaticity'? Give examples of 'trihapto' and 'hexahapto' complexes.	[3]
	c)	Discuss the role of Ziegler-Natta catalyst in polymerisation? Give example.	[4]
	d)	Show the structure of : $Ti(\eta^1 - C_5H_5)_2(\eta^2 - C_5H_5)_2$	[2]
	/	× 1 = 5 3/2× 1 = 5 3/2	

80參Q3